
Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

5.2 Binary Convolutional Codes

35

Digital Communication Systems
ECS 452

Binary Convolutional Codes

36

 Introduced by Elias in 1955
 There, it is referred to as convolutional parity-check symbols codes.
 Peter Elias received
 Claude E. Shannon Award in 1977

 IEEE Richard W. Hamming Medal in 2002

 for "fundamental and pioneering contributions to information theory and
its applications

 The encoder has memory.
 In other words, the encoder is a sequential circuit or a finite-

state machine.
 Easily implemented by shift register(s).

 The state of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

37

 The encoding is done on a continuous running basis rather
than by blocks of k data digits.
 So, we use the terms bit streams or sequences for the input

and output of the encoder.
 In theory, these sequences have infinite duration.
 In practice, the state of the convolutional code is periodically

forced to a known state and therefore code sequences are
produced in a block-wise manner.

Binary Convolutional Codes

38

 In general, a rate-
࢑
࢔

convolutional encoder has
 k shift registers, one per input information bit, and
 n output coded bits that are given by linear combinations (over

the binary field, of the contents of the registers and the input
information bits.

 k and n are usually small.
 For simplicity of exposition, and for practical purposes,

only rate-
૚
࢔

binary convolutional codes are considered here.
 k = 1.
 These are the most widely used binary codes.

Example: n = 2, k = 1

39

+

+

Graphical Representations

40

 Three different but related graphical representations have
been devised for the study of convolutional encoding:

1. the state diagram

2. the code tree

3. the trellis diagram

State (transition) Diagram

41

 The encoder behavior can be seen from the perspective of a
finite state machine with its state (transition) diagram.

+

+

00

0110

11

0/00

1/11 0/11

1/00

0/10

1/01 0/01

1/10

A four-state directed graph that
uniquely represents the input-output
relation of the encoder.

State Diagram

42

00

0110

11

+

+

State Diagram

43

00

0110

11

0

1

0 00

+

+

0 01

+

+

+

+

Input bit

State Diagram

44

0 00

+

+

0

0

0 01

+

+

1

1

+

+

00

0110

11

0/00

1/11

Input bit

Corresponding
output bits

State Diagram

45

0 10

+

+

1

1

0 11

+

+

0

0

+

+

00

0110

11

0/00

1/11 0/11

1/00

State Diagram

46

00

0110

11

0/00

1/11

b s0 s1 x(1) x(2)

0 0 0 0 0

1 0 0 1 1

0 0 1 1 1

1 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 1 0 1

1 1 1 1 0

+

+
0/11

1/00

0/10

1/01 0/01

1/10

+

+

State Diagram

47

00

0110

11

0/00

1/11 0/11

1/00

0/10

1/01 0/01

1/10

+

+

Input 1 1 0 1 1 1

Output 11 01 01 00 01 10

Parts for Code Tree

48

00

0110

11

0/00

1/11 0/11

1/00

0/10

1/01 0/01

1/10

+

+

00

10

01

11

00

10

01

11

00

10

01

11

0/00

1/11

0/10

1/01

0/11

1/00

1/10

0/01

Two branches initiate from each node,
the upper one for 0 and
the lower one for 1.

Code Tree

49

+

+

Start 00

0/00

1/11

00

10

00

10

01

11

00

10

01

11

00

10

01

11

0/00

1/11

0/10

1/01

0/00

1/11

0/10

1/01

0/11

1/00

1/10

0/01

00

10

01

11

00

10

01

11

00

10

01

11

0/00

1/11

0/10

1/01

0/11

1/00

1/10

0/01

00

10

0/00

1/11

01

11

0/10

1/01

00

10

0/11

1/00

10

111/10

0/01

00

10

0/00

1/11

01

11

0/10

1/01

00

10

0/11

1/00

10

111/10

0/01

Initially, we
always assume
that all the
contents of the
register are 0.

Show the coded output for any possible sequence of data digits.

Code Tree

50

+

+

Start 00

0/00

1/11

00

10

00

10

01

11

00

10

01

11

00

10

01

11

0/00

1/11

0/10

1/01

0/00

1/11

0/10

1/01

0/11

1/00

1/10

0/01

00

10

0/00

1/11

01

11

0/10

1/01

00

10

0/11

1/00

10

111/10

0/01

00

10

0/00

1/11

01

11

0/10

1/01

00

10

0/11

1/00

10

111/10

0/01

Input 1 1 0 1

Output 11 01 01 00

Code Trellis

51

+

+

00

10

01

11

00

10

01

11

00

10

01

11

0/00

1/11

0/10

1/01

0/11

1/00

1/10

0/01

00 00

10

0/00

10

01

11

01

11 1/10

Current
State

Next
State

[Carlson & Crilly, 2009, p. 620]

Trellis Diagram

52

0/00
00

10

01

11 1/10

0/00

1/10

0/00

1/10

0/00

1/10

0/00

1/10

0/00

1/10

+

+

00

10

01

11

Another useful way of
representing the code tree.

Trellis Diagram

53

0/00
00

10

01

11 1/10

0/00

1/10

0/00

1/10

0/00

1/10

0/000/00

+

+

00

10

01

11

Initially, we
always assume
that all the
contents of the
register are 0.

Each path that traverses through the
trellis represents a valid codeword.

Trellis Diagram

54

0/00
00

10

01

11 1/10

0/00

1/10

0/00

1/10

0/00

1/10

0/000/00

+

+

00

10

01

11

Input 1 1 0 1 1 1

Output 11 01 01 00 01 10

Directly Finding the Output

55

b s0 s1 x(1) x(2)

1 0 0 1 1

1 1 0 0 1

0 1 1 0 1

1 0 1 0 0

1 1 0 0 1

1 1 1 1 1

+

+

+

+

Input 1 1 0 1 1 1

Output 11 01 01 00 01 10

Direct Minimum Distance Decoding

56

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

+

+

Direct Minimum Distance Decoding

57

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

࢟ = [11 01 11].

00

10

01

11

0/00

1/10

0/000/00

Direct Minimum Distance Decoding

58

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)

The number in parentheses on each
branch is the branch metric, obtained
by counting the differences between
the encoded bits and the
corresponding bits in ࢟.

Direct Minimum Distance Decoding

59

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)

b d(x,y)

000 2+1+2 = 5

001 2+1+0 = 3

010 2+1+1 = 4

011 2+1+1 = 4

100 0+2+0 = 2

101 0+2+2 = 4

110 0+0+1 = 1

111 0+0+1 = 1

Viterbi decoding

60

 Developed by Andrew J. Viterbi
 Also co-founded Qualcomm Inc.

 Published in the paper "Error Bounds for
Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm", IEEE
Transactions on Information Theory, Volume
IT-13, pages 260-269, in April, 1967. ht

tp
s:

//
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/

A
nd

re
w

_V
ite

rb
i

Viterbi and His Decoding Algorithm

62 [http://viterbi.usc.edu/about/viterbi/viterbi_video.htm]

Andrew J. Viterbi

63

 1991: Claude E. Shannon Award

 1952-1957: MIT BS & MS
 Studied electronics and communications

theory under such renowned scholars as
Norbert Wiener, Claude Shannon, Bruno
Rossi and Roberto Fano.

 1962: Earned one of the first doctorates
in electrical engineering granted at the
University of Southern California (USC)
 Ph.D. dissertation: error correcting codes

 2004: USC Viterbi School of
Engineering
named in recognition of his $52 million gift

Andrew J. Viterbi

64 [http://viterbi.usc.edu/about/viterbi/viterbi_video.htm]

Andrew J. Viterbi

65

 Cofounded Qualcomm
 Helped to develop the CDMA standard for cellular networks.
 1998 Golden Jubilee Award for Technological Innovation

 To commemorate the 50th Anniversary of Information Theory
 Given to the authors of discoveries, advances and inventions that have had a profound

impact in the technology of information transmission, processing and compression.
1. Norman Abramson: For the invention of the first random-access communication protocol.

2. Elwyn Berlekamp: For the invention of a computationally efficient algebraic decoding algorithm.

3. Claude Berrou, Alain Glavieux and Punya Thitimajshima: For the invention of turbo codes.

4. Ingrid Daubechies: For the invention of wavelet-based methods for signal processing.

5. Whitfield Diffie and Martin Hellman: For the invention of public-key cryptography.

6. Peter Elias: For the invention of convolutional codes.
7. G. David Forney, Jr: For the invention of concatenated codes and a generalized minimum-distance decoding algorithm.

8. Robert M. Gray: For the invention and development of training mode vector quantization.

9. David Huffman: For the invention of the Huffman minimum-length lossless data-
compression code.

10. Kees A. Schouhamer Immink: For the invention of constrained codes for commercial recording systems.

11. Abraham Lempel and Jacob Ziv: For the invention of the Lempel-Ziv universal data compression algorithm.

12. Robert W. Lucky: For the invention of pioneering adaptive equalization methods.

13. Dwight O. North: For the invention of the matched filter.

14. Irving S. Reed: For the co-invention of the Reed-Solomon error correction codes.

15. Jorma Rissanen: For the invention of arithmetic coding.

16. Gottfried Ungerboeck: For the invention of trellis coded modulation.

17.Andrew J. Viterbi: For the invention of the Viterbi algorithm.

Viterbi Decoding

61

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)2

0

3

3

2

0

Each circled number at
a node is the running
(cumulative) path metric,
obtained by summing
branch metrics (distance)
up to that node.

 For the last column of nodes,
each of the nodes has two
branches going into it.

 So, there are two possible
cumulative distance values.

 We discard the larger-
metric path because,
regardless of what happens
subsequently, this path will
have a larger Hamming
distance from y .

Viterbi Decoding

62

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)2

0

3

3

2

0

5

3

4

4

2

4

1

1

Viterbi Decoding

63

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 For the last column of nodes,
each of the nodes has two
branches going into it.

 So, there are two possible
cumulative distance values.

 We discard the larger-
metric path because,
regardless of what happens
subsequently, this path will
have a larger Hamming
distance from y .

5

3

4

4

2

4

1

1

×

×
×

×

Viterbi Decoding

64

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11 1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 For the last column of nodes,
each of the nodes has two
branches going into it.

 So, there are two possible
cumulative distance values.

 We discard the larger-
metric path because,
regardless of what happens
subsequently, this path will
have a larger Hamming
distance from y .

2

3

1

1

Viterbi Decoding

65

 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11 1/10 (1)

࢟ = [11 01 11].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 So, the codewords
which are nearest to is
[11 01 01] or [11 01
10].

 The corresponding
messages are [110] or
[111], respectively.

2

3

1

1

Ex. Viterbi Decoding

66

 Suppose = [01 10 11 10 00 00].

After two stages, there is
exactly one optimum
(surviving) path to each
state.

Ex. Viterbi Decoding

67

 Suppose = [01 10 11 10 00 00].

Each state at
stage 3 has two
possible paths.
We keep the
optimum path
with the
minimum
distance (solid
line).

The same procedure is repeated for stages 4, 5, and 6.

Ex. Viterbi Decoding

68

 Suppose = [01 10 11 10 00 00].

Ex. Viterbi Decoding

69

 Suppose = [01 10 11 10 00 00].

Ex. Viterbi Decoding

70

 Suppose = [01 10 11 10 00 00].

መ܊ = [1 0 0 0 0 0]

ොܠ = [11 10 11 00 00 00]

Viterbi Decoding

71

 Suppose = [11 01 11 00 01 10].

 Find .

00

10

01

11 1/10 (1)

࢟ = [11 01 11 00 01 10].
0/00 (2) 0/00 (1)2

0

3

3

2

0

0/00 (0)

1/10 (1)

2

3

1

1

0/00 (1)

1/10 (2)

0/00 (1)

1/10 (0)

Viterbi Decoding

72

 Suppose = [11 01 11 00 01 10].

 Find .

00

10

01

11 1/10 (1)

࢟ = [11 01 11 00 01 10].
0/00 (2) 0/00 (1)2

0

3

3

2

0

0/00 (0)

1/10 (1)

2

3

1

1

0/00 (1)2

1

2

2
1/10 (0)

3

3

2

1

3

3

3

1

መ܊ = [1 1 0 1 1 1]

ොܠ = [11 01 01 00 01 10]

MATLAB: Generator Polynomial Matrix

78

 Build a binary number representation by placing a 1 in each spot where a
connection line from the shift register feeds into the adder, and a 0
elsewhere.
 The leftmost spot in the binary number represents the current input, while

the rightmost spot represents the oldest input that still remains in the shift
register.

 Convert this binary representation into an octal representation.
 by considering consecutive triplets of bits
 For example, interpret 1101010 as 001 101 010 and convert it to 152.
 str2num(dec2base(bin2dec('1101010'),8))

 For example, the binary numbers
corresponding to the upper and lower
adders in the figure here are 110 and
111, respectively.
 These binary numbers are equivalent to

the octal numbers 6 and 7, respectively,
 so the generator polynomial matrix is [6

7].

MATLAB:

79

 To use the polynomial description with the functions
convenc and vitdec, first convert it into a trellis
description using the poly2trellis function.

 For example,
trellis = poly2trellis(3,[6 7]);

Constraint Length
= #FFs + 1

MATLAB: Trellis Description

80

 Each solid arrow shows how
the encoder changes its state if
the current input is zero.

 Each dashed arrow shows how
the encoder changes its state if
the current input is one.

 The octal numbers above each
arrow indicate the current
output of the encoder.

MATLAB: Trellis Structure

81

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

૛࢑ ૛࢔

MATLAB : Convolutional Encoding

82

 x = convenc(b,trellis);

Example (from the exercise)

83

+

+

trellis = poly2trellis(3,[6 7]);
b = [1 0 1 1 0];
x = convenc(b,trellis)

>> ConvCode_Exer
x =

1 1 1 1 1 0 0 0 1 0

[ConvCode_Exer.m]

Reference

84

 Chapter 15 in [Lathi & Ding, 2009]

 Chapter 13 in [Carlson & Crilly, 2009]

 Section 7.11 in [Cover and Thomas, 2006]

