Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.2 Binary Convolutional Codes

Binary Convolutional Codes

- Introduced by Elias in 1955
 - There, it is referred to as convolutional parity-check symbols codes.
 - Peter Elias received
 - Claude E. Shannon Award in 1977
 - IEEE Richard W. Hamming Medal in 2002
 - for "fundamental and pioneering contributions to information theory and its applications
- The encoder has memory.
 - In other words, the encoder is a sequential circuit or a finite-state machine.
 - Easily implemented by shift register(s).
 - The state of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

- The encoding is done on a **continuous** running basis rather than by blocks of *k* data digits.
 - So, we use the terms **bit streams** or **sequences** for the input and output of the encoder.
 - In theory, these sequences have infinite duration.
 - In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.

Binary Convolutional Codes

- In general, a rate- $\frac{k}{n}$ convolutional encoder has
 - *k* shift registers, one per input information bit, and
 - *n* output coded bits that are given by linear combinations (over the binary field, of the contents of the registers and the input information bits.
- k and n are usually small.
- For simplicity of exposition, and for practical purposes, only $\frac{1}{n}$ binary convolutional codes are considered here.
 - k = 1.
 - These are the most widely used binary codes.

Graphical Representations

- Three different but related graphical representations have been devised for the study of convolutional encoding:
- 1. the state diagram
- 2. the code tree
- 3. the trellis diagram

State (transition) Diagram

• The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

A four-state directed graph that uniquely represents the input-output relation of the encoder.

"tracins"

State Diagram

b=[1 10 1 11]

Input	1	1	0	1	1	1
Output	11	01	01	00	01	10

<u>x</u> = [110101000110]

Parts for Code Tree

Two branches initiate from each node, the upper one for 0 and the lower one for 1.

Show the coded output for any possible sequence of data digits.

Input	1	1	0	1
Output	11	01	01	00

Code Trellis

[Carlson & Crilly, 2009, p. 620]

Trellis Diagram

Another useful way of representing the code tree.

Trellis Diagram

Each path that traverses through the trellis represents a valid codeword.

Trellis Diagram

Input	1	1	0	1	1	1
Output	11	01	01	00	01	10

Directly Finding the Output

Input	1	1	0	1	1	1)
Output	11	01	01	00	01	10	

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

The number in parentheses on each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in \mathbf{y} .

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

<u>b</u>	$d(\underline{x},\underline{y})$
000	2+1+2=5
001	2+1+0=3
010	2+1+1=4
011	2+1+1=4
100	0+2+0=2
101	0+2+2=4
110	0+0+1 = 1
111	0+0+1=1

- Developed by Andrew J. Viterbi
 - Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

Viterbi and His Decoding Algorithm

Andrew J. Viterbi

- 1991: Claude E. Shannon Award
- 1952-1957: MIT BS & MS
 - Studied electronics and communications theory under such renowned scholars as Norbert Wiener, Claude Shannon, Bruno Rossi and Roberto Fano.
- 1962: Earned one of the first doctorates in electrical engineering granted at the University of Southern California (USC)
 - Ph.D. dissertation: error correcting <u>codes</u>
- 2004: USC Viterbi School of Engineering named in recognition of his \$52 million gift

Andrew J. Viterbi

Andrew J. Viterbi

- Cofounded Qualcomm
- Helped to develop the CDMA standard for cellular networks.
- 1998 Golden Jubilee Award for Technological Innovation
 - To commemorate the 50th Anniversary of Information Theory
 - Given to the authors of discoveries, advances and inventions that have had a profound impact in the technology of information transmission, processing and compression.
 - 1. Norman Abramson: For the invention of the first random-access communication protocol.
 - 2. Elwyn Berlekamp: For the invention of a computationally efficient algebraic decoding algorithm.
 - 3. Claude Berrou, Alain Glavieux and Punya Thitimajshima: For the invention of turbo codes.
 - 4. Ingrid Daubechies: For the invention of wavelet-based methods for signal processing.
 - 5. Whitfield Diffie and Martin Hellman: For the invention of public-key cryptography.
 - 6. Peter Elias: For the invention of convolutional codes.
 - 7. G. David Forney, Jr: For the invention of concatenated codes and a generalized minimum-distance decoding algorithm.
 - 8. Robert M. Gray: For the invention and development of training mode vector quantization.
 - 9. David **Huffman**: For the invention of the Huffman minimum-length lossless data-compression code.
 - 10. Kees A. Schouhamer Immink: For the invention of constrained codes for commercial recording systems.
 - Abraham Lempel and Jacob Ziv: For the invention of the Lempel-Ziv universal data compression algorithm.
 - 12. Robert W. Lucky: For the invention of pioneering adaptive equalization methods.
 - 13. Dwight O. North: For the invention of the matched filter.
 - 14. Irving S. Reed: For the co-invention of the Reed-Solomon error correction codes.
 - 15. Jorma Rissanen: For the invention of arithmetic coding.
 - 16. Gottfried Ungerboeck: For the invention of trellis coded modulation.
 - 17. Andrew J. Viterbi: For the invention of the Viterbi algorithm.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

Each circled number at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the largermetric path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>v</u>.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the largermetric path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>y</u>.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.

- So, the codewords which are nearest to **y** is [11 01 01] or [11 01 10].
- The corresponding messages are [110] or [111], respectively.

Ex. Viterbi Decoding

• Suppose $\mathbf{y} = [01 \ 10 \ 11 \ 10 \ 00 \ 00].$

$$\hat{\mathbf{x}} = [11 \ 10 \ 11 \ 00 \ 00 \ 00]$$

$$\hat{\mathbf{b}} = [1\ 0\ 0\ 0\ 0\ 0]$$

Viterbi Decoding

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

Viterbi Decoding

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

$$\hat{\mathbf{x}} = [11\ 01\ 01\ 00\ 01\ 10]$$

$$\mathbf{\hat{\underline{b}}} = [1 \ 1 \ 0 \ 1 \ 1 \ 1]$$

MATLAB: Generator Polynomial Matrix

- Build a binary number representation by placing a 1 in each spot where a connection line from the shift register feeds into the adder, and a 0 elsewhere.
 - The leftmost spot in the binary number represents the current input, while the rightmost spot represents the oldest input that still remains in the shift register.
- Convert this binary representation into an **octal representation**.
 - by considering consecutive triplets of bits
 - For example, interpret 1101010 as 001 101 010 and convert it to 152.
 - str2num(dec2base(bin2dec('1101010'),8))
- For example, the binary numbers corresponding to the upper and lower adders in the figure here are 110 and 111, respectively.
 - These binary numbers are equivalent to the octal numbers 6 and 7, respectively,
 - so the generator polynomial matrix is [6 7].

MATLAB:

- To use the polynomial description with the functions **convenc** and **vitdec**, first convert it into a trellis description using the **poly2trellis** function.
- For example,
 trellis = poly2trellis(3,[6 7]);

Constraint Length = #FFs + 1

MATLAB: Trellis Description

- Each solid arrow shows how the encoder changes its state if the current input is zero.
- Each dashed arrow shows how the encoder changes its state if the current input is one.
- The octal numbers above each arrow indicate the current output of the encoder.

—— State transition when input is 0

– – State transition when input is 1

MATLAB: Trellis Structure

```
trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);
```


- State transition when input is 0
- – State transition when input is 1

MATLAB: Convolutional Encoding

• x = convenc(b, trellis);

Example (from the exercise)


```
trellis = poly2trellis(3,[6 7]);
b = [1 0 1 1 0];
x = convenc(b,trellis)
```

[ConvCode_Exer.m]

```
>> ConvCode_Exer
x =
1 1 1 1 1 0 0 0 1 0
```

Reference

- Chapter 15 in [Lathi & Ding, 2009]
- Chapter 13 in [Carlson & Crilly, 2009]
- Section 7.11 in [Cover and Thomas, 2006]