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Binary Convolutional Codes
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 Introduced by Elias in 1955
 There, it is referred to as convolutional parity-check symbols codes.
 Peter Elias received
 Claude E. Shannon Award in 1977

 IEEE Richard W. Hamming Medal in 2002 

 for "fundamental and pioneering contributions to information theory and 
its applications

 The encoder has memory.
 In other words, the encoder is a sequential circuit or a finite-

state machine. 
 Easily implemented by shift register(s).

 The state of the encoder is defined as the contents of its memory.



Binary Convolutional Codes
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 The encoding is done on a continuous running basis rather 
than by blocks of k data digits.
 So, we use the terms bit streams or sequences for the input 

and output of the encoder.
 In theory, these sequences have infinite duration. 
 In practice, the state of the convolutional code is periodically 

forced to a known state and therefore code sequences are 
produced in a block-wise manner.



Binary Convolutional Codes
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 In general, a rate-
࢑
࢔

convolutional encoder has 
 k shift registers, one per input information bit, and 
 n output coded bits that are given by linear combinations (over 

the binary field, of the contents of the registers and the input 
information bits.

 k and n are usually small.
 For simplicity of exposition, and for practical purposes, 

only rate-
૚
࢔

binary convolutional codes are considered here.
 k = 1.
 These are the most widely used binary codes. 



Example: n = 2, k = 1
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Graphical Representations
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 Three different but related graphical representations have 
been devised for the study of convolutional encoding: 

1. the state diagram

2. the code tree

3. the trellis diagram



State (transition) Diagram
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 The encoder behavior can be seen from the perspective  of  a 
finite state machine with its state (transition) diagram.

+

+
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A four-state directed graph that 
uniquely represents the input-output 
relation  of  the encoder. 



State Diagram
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State Diagram
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State Diagram
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State Diagram
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State Diagram
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State Diagram
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+

+

Input 1 1 0 1 1 1

Output 11 01 01 00 01 10



Parts for Code Tree
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Two branches initiate from  each  node, 
the  upper  one  for  0  and  
the  lower  one  for  1. 



Code Tree
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Initially, we 
always assume 
that all the 
contents of the 
register are 0.

Show  the  coded  output  for  any  possible  sequence of data digits. 



Code Tree
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Code Trellis
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+
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[Carlson & Crilly, 2009, p. 620]



Trellis Diagram
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Another useful way  of  
representing the code tree.



Trellis Diagram
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Initially, we 
always assume 
that all the 
contents of the 
register are 0.

Each path that traverses through the 
trellis represents a valid codeword.



Trellis Diagram
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Directly Finding the Output
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b s0 s1 x(1) x(2)

1 0 0 1 1

1 1 0 0 1

0 1 1 0 1

1 0 1 0 0

1 1 0 0 1

1 1 1 1 1

+

+

+

+

Input 1 1 0 1 1 1

Output 11 01 01 00 01 10



Direct Minimum Distance Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

+

+



Direct Minimum Distance Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

࢟ = [      11                  01                  11                 ].

00

10

01

11

0/00

1/10

0/000/00



Direct Minimum Distance Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)

The number in parentheses on each 
branch is the branch metric, obtained 
by counting the differences between 
the encoded bits and the 
corresponding bits in ࢟. 



Direct Minimum Distance Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)

b d(x,y)

000 2+1+2 = 5

001 2+1+0 = 3

010 2+1+1 = 4

011 2+1+1 = 4

100 0+2+0 = 2

101 0+2+2 = 4

110 0+0+1 = 1

111 0+0+1 = 1



Viterbi decoding 
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 Developed by Andrew J. Viterbi 
 Also co-founded Qualcomm Inc. 

 Published in the paper "Error Bounds for 
Convolutional Codes and an Asymptotically 
Optimum Decoding Algorithm", IEEE 
Transactions on Information Theory, Volume 
IT-13, pages 260-269, in April, 1967. ht
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Viterbi and His Decoding Algorithm

62 [http://viterbi.usc.edu/about/viterbi/viterbi_video.htm]



Andrew J. Viterbi
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 1991: Claude E. Shannon Award

 1952-1957: MIT BS & MS
 Studied electronics and communications 

theory under such renowned scholars as 
Norbert Wiener, Claude Shannon, Bruno 
Rossi and Roberto Fano.

 1962: Earned one of the first doctorates 
in electrical engineering granted at the 
University of Southern California (USC)
 Ph.D. dissertation: error correcting codes

 2004: USC Viterbi School of 
Engineering
named in recognition of his $52 million gift



Andrew J. Viterbi

64 [http://viterbi.usc.edu/about/viterbi/viterbi_video.htm]



Andrew J. Viterbi
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 Cofounded Qualcomm
 Helped to develop the CDMA standard for cellular networks.
 1998 Golden Jubilee Award for Technological Innovation

 To commemorate the 50th Anniversary of Information Theory
 Given to the authors of discoveries, advances and inventions that have had a profound 

impact in the technology of information transmission, processing and compression.
1. Norman Abramson: For the invention of the first random-access communication protocol.

2. Elwyn Berlekamp: For the invention of a computationally efficient algebraic decoding algorithm.

3. Claude Berrou, Alain Glavieux and Punya Thitimajshima: For the invention of turbo codes.

4. Ingrid Daubechies: For the invention of wavelet-based methods for signal processing.

5. Whitfield Diffie and Martin Hellman: For the invention of public-key cryptography.

6. Peter Elias: For the invention of convolutional codes.
7. G. David Forney, Jr: For the invention of concatenated codes and a generalized minimum-distance decoding algorithm.

8. Robert M. Gray: For the invention and development of training mode vector quantization.

9. David Huffman: For the invention of the Huffman minimum-length lossless data-
compression code.

10. Kees A. Schouhamer Immink: For the invention of constrained codes for commercial recording systems.

11. Abraham Lempel and Jacob Ziv: For the invention of the Lempel-Ziv universal data compression algorithm.

12. Robert W. Lucky: For the invention of pioneering adaptive equalization methods.

13. Dwight O. North: For the invention of the matched filter.

14. Irving S. Reed: For the co-invention of the Reed-Solomon error correction codes.

15. Jorma Rissanen: For the invention of arithmetic coding.

16. Gottfried Ungerboeck: For the invention of trellis coded modulation.

17.Andrew J. Viterbi: For the invention of the Viterbi algorithm.



Viterbi Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

Each circled number at 
a node is the running 
(cumulative) path metric, 
obtained by summing 
branch metrics (distance) 
up to that node.



 For the last column of nodes, 
each of the nodes has two 
branches going into it. 

 So, there are two possible 
cumulative distance values.

 We discard the larger-
metric path because, 
regardless of what happens 
subsequently, this path will 
have a larger Hamming 
distance from y .

Viterbi Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

5

3

4

4

2

4

1

1



Viterbi Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11

0/00 (2)

1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 For the last column of nodes, 
each of the nodes has two 
branches going into it. 

 So, there are two possible 
cumulative distance values.

 We discard the larger-
metric path because, 
regardless of what happens 
subsequently, this path will 
have a larger Hamming 
distance from y .
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11 1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 For the last column of nodes, 
each of the nodes has two 
branches going into it. 

 So, there are two possible 
cumulative distance values.

 We discard the larger-
metric path because, 
regardless of what happens 
subsequently, this path will 
have a larger Hamming 
distance from y .
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1

1



Viterbi Decoding
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 Suppose = [11 01 11].

 Find .
 Find the message which corresponds to the (valid) codeword

with minimum (Hamming) distance from .

00

10

01

11 1/10 (1)

࢟ = [      11                  01                  11                 ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

 So, the codewords
which are nearest to is 
[11 01 01] or [11 01 
10].

 The corresponding 
messages are [110] or 
[111], respectively.

2
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1

1



Ex. Viterbi Decoding
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 Suppose = [01 10 11 10 00 00].

After two stages, there is 
exactly one optimum 
(surviving) path to each 
state.



Ex. Viterbi Decoding
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 Suppose = [01 10 11 10 00 00].

Each state at 
stage 3 has two 
possible paths. 
We keep the 
optimum path
with the 
minimum 
distance (solid 
line).

The same procedure is repeated for stages  4,  5, and  6.



Ex. Viterbi Decoding
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 Suppose = [01 10 11 10 00 00].



Ex. Viterbi Decoding
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 Suppose = [01 10 11 10 00 00].



Ex. Viterbi Decoding
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 Suppose = [01 10 11 10 00 00].

መ܊ = [1 0 0 0 0 0]

ොܠ = [11 10 11 00 00 00] 



Viterbi Decoding
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 Suppose = [11 01 11 00 01 10].

 Find .

00

10

01

11 1/10 (1)

࢟ = [      11                       01                   11                    00                 01                   10        ].
0/00 (2) 0/00 (1)2

0

3

3

2

0

0/00 (0)

1/10 (1)

2

3

1

1

0/00 (1)

1/10 (2)

0/00 (1)

1/10 (0)
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 Suppose = [11 01 11 00 01 10].

 Find .

00

10
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11 1/10 (1)

࢟ = [      11                       01                   11                    00                 01                   10        ].
0/00 (2) 0/00 (1)2

0
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3

2

0

0/00 (0)

1/10 (1)

2

3

1

1

0/00 (1)2

1

2

2
1/10 (0)

3

3

2

1

3

3

3

1

መ܊ = [1 1 0 1 1 1]

ොܠ = [11 01 01 00 01 10] 



MATLAB:  Generator Polynomial Matrix
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 Build a binary number representation by placing a 1 in each spot where a 
connection line from the shift register feeds into the adder, and a 0 
elsewhere. 
 The leftmost spot in the binary number represents the current input, while 

the rightmost spot represents the oldest input that still remains in the shift 
register.

 Convert this binary representation into an octal representation. 
 by considering consecutive triplets of bits
 For example, interpret 1101010 as 001 101 010 and convert it to 152.
 str2num(dec2base(bin2dec('1101010'),8))

 For example, the binary numbers 
corresponding to the upper and lower 
adders in the figure here are 110 and 
111, respectively. 
 These binary numbers are equivalent to 

the octal numbers 6 and 7, respectively, 
 so the generator polynomial matrix is [6 

7].



MATLAB: 
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 To use the polynomial description with the functions 
convenc and vitdec, first convert it into a trellis 
description using the poly2trellis function. 

 For example, 
trellis = poly2trellis(3,[6 7]);

Constraint Length
= #FFs + 1



MATLAB: Trellis Description
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 Each solid arrow shows how 
the encoder changes its state if 
the current input is zero.

 Each dashed arrow shows how 
the encoder changes its state if 
the current input is one. 

 The octal numbers above each 
arrow indicate the current 
output of the encoder.



MATLAB: Trellis Structure
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trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

૛࢑ ૛࢔



MATLAB : Convolutional Encoding
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 x = convenc(b,trellis);



Example (from the exercise)
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+

+

trellis = poly2trellis(3,[6 7]);
b = [1 0 1 1 0];
x = convenc(b,trellis)

>> ConvCode_Exer
x =

1     1     1     1     1     0     0     0     1     0

[ConvCode_Exer.m]



Reference
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 Chapter 15 in [Lathi & Ding, 2009]

 Chapter 13 in [Carlson & Crilly, 2009]

 Section 7.11 in [Cover and Thomas, 2006]


